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A Study of Some Electromagnetic Problems

Relating to EMP Technology

This is the final report under Air Force Office of Scientific Research

Grant /o. 77-3465 bearing the above title covering the period from 30 Sep-

tember 1977 to 23 February 1979.

The research covers two main topics: the equivalent circuit representa-

tions of radiating systems and certain aspects of sensor characteristics.

The detailed treatments have been written up and are attached as the appendices

to this report. The following is a brief summary of the research results.

For the equivalent circuit problem the development and the testing of a

num-erical technique for raLional functions have been accompliqhed. A network

modelling leading to a canonical ladder configuration is then formulated.

Finally the equivalent circuit representation of a thin biconical antenna is

constructed based on these methods. The research shows that transfer functions

involved in radiating and scattering problems can be represented by such an

equivalent circuit representation. In contrast to the equivalent circuit rep-

resentation suggested by C.E. Baum [Single Port Equi,1ent Cirrcit fnr An-

tenna and Scatterers, Interaction Note 295, Air Force Weapons Laboratory,

March, !976] our method does not require explicit knowledge of the poles of

these transfer functions.

1he second appendix treats the responses of a short dipole and a small

loop placed in a right-angle conducting corner. The work is intended to

correlate the open-circuit volt anp of a qennr with th., local surface charce

densit! or surface current density on a scatterer. The right-angle corner

is a simple structure for which an exact formulation of the problem can

be given. The results show the exact relationship between the open circuit
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voltage and the local surface charge or surface current density on the corner.

The appendix also contains an investiqaton of the impedance functions of these

probes taking into consideration the proximity effect of the corner.

The researcn on the equivalent circuit representation was presented at

the niuclear EMIP Meeting held at the University of New !.!exico, June 6-8, 1978.

The paper is entitled "A Network Model for the Biconical Antenna," by C.B. Sharpe

and C.J. Roussi. Our viork on the sensor research ha.s just been completed

and ,.ill be submitted to the Air Force Weapons Laboratory for consideration of

publication as a note in the Sensor Series.
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Abstract

In this report the biconical antenna is treated as a representative

scattering system. It is shon that at its input terminals the biconical

antenna can be modeled by a transmission line terminated in a cannonical LC

ladder network. The real and imaginary parts of the input impedance of the

biconical antenna serve as useful test functions for studying the approxima-

tion of complex functions of frequency by -atioa finctions. An effective

alqorithm for this purpose was implemented and evaluated. It is also shlo..n

that over a limited domain in the complex frequency Plane the ::oles and zeros

of the system function can be recovered via the rational approxi! ation.
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I. Introduction

In develoning eauivalent circuits for radiating systems we have

divided the problem into two basic parts: the development of a rational

function approximation technicue and the development of luro,,ed network

synthesis orocedures appropriate to the system in question. Of course,

the first -art must serve as a basis for the second. Typically the

rational f'nCton will represent in analytic urm the transfer a.mittance

of a system obtained by experim.entally measuring the amplitude and phase

of the surface current as a function of frequencv at some point on tne

scatteringT object with reference to the incident electric field at som-

reference 'aone. In the general case all we can say about the transfer

function is that its poles must all lie in the closed left half-piane.

The zeros may lie in either half-plane. Among the parameters in the

problem are the polarization and aspect of the incident field, the loca-

ticn and orientation of the current probe on the object and, of course,

the sha.e of the scattering body. An imoortant question which remains

to be answered is the nature of the dependence of the poles and zeros

of the transfer function on these parameters.

In order to explore the above question, much of our initial effort

has beon devoted to ta development and testing of a numerical approxi-

mation tecunc for rational functions. This technicue and its appli-

cation in se'.eral reoresentative approximation problems is described in

Section 3. :s a oreliminary exercise, a network modelling problem lead-

in<; to a cannonical ladder configuration was also investigated and com-

pleted. This work is presented in the next section. Both of the above

studies ;.;ere centered around the biconical antenna. One reason for this

approach is that the input impedance of the biconical antenna exhibits

many of the frecuency response characteristics of more general scattering

structures, an( is, therefore, a useful vehicle for test purposes.

2. A Metwork Model for the Biconical Antenna

The biconical antenna offers an interesting example cn which to

te.s network' model ing technirouos because an exact anal'tica1 expression

for the input impedance is available. Tai I ] has shown that the inout

improdance at the center of the biconiral antenna can be represented

b-y a section of uniform line terminatc in a frequency-,Iepondent admit-

tance Yt ). This equivalent circuit is illustrated in Figure 1, where
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K denotes the c!:'-:acteristic impedance of the line. The following

expression was obtained by Tai for Yt

L2L ( 2 )+e 2 '[L( 2. )-L(4 )+ n 2]e2i [L*(2 1)n 23,

(1)

where

L 1-cost d t sinta
( t to o

and the asteri4sk denotes the comnne:.: conjugate. The real and imani.ar.

parts of Y(S ) are plotted in Ficure [2] for the case where the ann:ie

of the cone, -0 .01 radians.

The objective of the work described in this section is to construc=

a lumned network model for the load admittance Yt of the equivalent cir-

cuit shown in Ficure 1. Because Y. represents a positive real driving

point admittance, it is possible in principle to synthesize a networ

model from real part of Y t alone. From (1), the asymptotic behavior

of the real part of Y (3) at low frequencies is civen bv
limZ

- 0 41;- -Re Y: 27)] - (5",.) ,

whe.e Z is the chra ctristic impedance of free space. This suC-cess

that we look for a network having an input admittance V (j) such the tn

4
Re[Y (J-')] = I, - (2)11m ( 2 )

2
where P(< is a polynomial of the form

P ) = 0 2 2 ';±1
D' = 0 + P2 2  +  ... + 0 4n a

It will now he shown that Y (s) can always be realized as an LC ladder
2

terminated in a resistance if P(. 2 ) > 0, all w.

Suppose a lossless network is excited as shown in Figure [3] and

dsume that the scattering coefficient S21(s) has the form

2
52 (S) - s , (3)

where B(s) is a polynomial of degree 2n having all its roots in the L1IP.

Then if A(s) is another polynomial of degree 2n, S1 1 (s) will have the

form
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ii B(S)

Teuniter., cond itlon,

(-+ S 2 1 (s)S 2 1l(s)=1

B~s(-s -As(s) =- (4)

Th S 7s -je on~conditiojn on A (s) T!e innut admittance can be e:-~rss-

1 +t S 1 (S) Us

S A s) B(s) -nd-(s) = (s) A A(s). Ecuation (4) 1e2as -

4

Uj

Tha .. ~l). )can- be idnt __f-_=-d ;i th the -,rodue1t

2,.

j -U 0n-; that thle transm-,,-ss-on fun-ction riven in ()c-n

no uva -idr net,;orft of the 'crn7 shown in Fidure L4

e in ner---. sto acj 'le-nents, 2n, correspDondls to t~l

nerriratpraU's of S , (s) and the t-,;co zeros of transmission reuuireed

ats 3:r"~'.a and, L. It should be noted that this real-

(s i~s notunc.
EUa'" aias-eCt ofthe moc,.linma problem involves the determin-

2 4 2
ara ,C7t o ~ bv curve-fittin;, the function

U [ (This can most readily, be :on e

4

L2 2~ (6)

t 0

r.,r i- ri' ea -i' coeff6 cients. In the results th.at

1~h r~mrnl ia t ion , c wa F em nyed Th a n..
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rr ~ ~ ~ 1 .rnc au _"r'n~ ~h ata Punction -,,as samrnoled is a- function Of

a n'4 was actor ... L _

Of course ' of empiovinc a icast-scuares nbjective

~~inasdf:~ .. strttemnmization of IF 'with resn ect to

tue u i~Q,2t, !, leads to a system of'ina equations for the

uu cooa cc:t ns. ah alnor-thm is easily, i-molemented and th'e sola-

::fcr the cp~~ec rcsents no dlifficultv as long as the co-res-

7 arr rc-a'a s -e II -,-or Jt onu-d. Cheb.:sh_-.r o;noilmtci

or ~ ~ ~ p ner......ur o:.:~osscn awo algorithm [ 21, can s

S_ ~_t a __ t_ h, __--hm tat 're-:ue~tlv .occurs forlrc-

~~aa ,a~.-:nO.:znw' not fin(:- this to *.e re-cessarv. Once t'-_

.. n o%.' n 2s 7 .ct lj can harecov:eret, frcm

2,2

.toi(s, -- s the rm

- 2n

c ~ ~ ~ ~ 2 n. -2 I C

. J.e n in ( For instance, in the case of-3 he

- - .~ .c. tke-he form,

O 0 0 d6  -d 7 l 0:
0 C1 -d di d Ci 0

6 4 32
-, & -~ d -di c 0

4 2 13
2 d 0  4

fd 0 0 0 c i0
0 5

.... ro :s con Ie t ed by expanding Y ()=;s/us I~

.. ~ ~ ~ C, .o n:intfing- the coefficients with the elemen-ts

ThC.. , for the network of Ficoure 4, the expans-Lon



y (s) 1
11

+sC1
+

1~ sL2 +1

sC2 +

1

sC + 1-
n R

es and 6 illustrate some typical results obtained by the

modelng tecnicue described above. In each case 0 .01 radians. The

elemn: va lues for the approxi:.ating network are calculated assuming

T t can n seen that the least-scuares fit in the real part of the

acm -canco is ::uit satisfactorv and thac the band over which the

apnrc.imanion is valid increases, as expected, with the order of the

n etwor, t can be seen from Figures 7 and 8 that the approximation in

-rl an -l cn:7a.narv parts of z. , the input impedance of the antenna,
in'

is nc- as ocd as th.at obtai ed for Y t This can be explained by notinc

that t_ ,rror in approximating tm[Y ] is not controlled in the present

proceaura% and, therefore, it contributes to the observed error in Z.in
wncnrr throuqh the transmission line. To avoid this effect,

it would be necessary to control both the real and imaginary parts of
7"'. This could be accomplished by using the ladder element values obtainec
nere as inatial values in a computer-aided design procedure. In this

event a nonlinear function minimization algorithm would be required.

7n conclusion, it has been shown that the biconical antenna can be

efcti.'elv modeled by a transmission line terminated in an LC ladder

network'. th a resistive load. It has been shown that the modeling

problem can be reduced to a straightforward numerical approximation pro-

cedure followed by a direct synthesis algorithm.

3. An-nro:.Ki7mtation by Rational Functions

3.i T ,,-or:

It is often the case that one would like to express the transfer

function of a linear system as the ratio of two polynomials. This form

is preferred as it lends iLself to linear transform methods of solution.

Of th techni ues that have been developed to fit experimental data by

so1C rational functions [31-[41, the one by Levy is the most notable

[5,-[61 and] form-, the basis of the rational approximation method examined

in this report.
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A fuCtion of the form

aa + a a, Na0 + l J. . . . N(:
H(] ) b=. m(j.j

b 0 + b 1 - + .. + bm Mj D (

is chosen to acroximate (in the least-squares sense) a given complex

set of data F. F +j ~
sa F. Ri + F+ ., i=l, ... , N, where H(y ) recresents, tor

amoe, the trns-r functicn of a lumped network and F. the stead.'-

state data associated, for example, with the currcnt at some point on a

scat-tering oject. The a. ano b. coeficients are found bv. minimizinu1 1

7 ei ,- 2

- ' 1~~i

The rcbl , with this formulation is two-fold: E is a nonlinear functtion

of the unknown coefficients amn the low frequency data is not wei-hted

sufficiently. As a result, wide swings in the input data will cause

lare2 apprc::imatinc errors at low frequencies. These -rclems a, vb

remeied b defining a new error,

e* _ D"( .)1ei

1

where t- su e rscript k' refer s to the ite ratin numbr1h after a

iteration, one refines the error estimate in this way and minimizes again,

a much better appro::imation is obtained. Sanathanan and Foerner 7

.- e shown that D" = Dk- after a sufficient number of linear iterations.

i-his chan e, the object function nowi becomes

S[D (jw.7  + jDl (wi) [F,(W.) + jF (w. )-[NR(Jwi)+jN (w ) 2

ill1 D" (jw.)

-[D R  + jD ]IF + jF I - [N a  + JNI] 2 i
iR I ik

wh -9is a %%7e -ht function, and the subscripts R and I indi-

D

care t- ro ri 'rn>i nrv [parts of the terms. The minimization of E*

_, 10 1 -ow a 11near problem. To this end E* is partially

r!o t. .'. wir t. cco to -each of the polynomial coefficients and

r-ill tr.r to zro. Th y the following matrix equation:
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0 - 04 .. T1  S2  3 S4  a S

0 2 0 - 4 0 •. -S 2  T 3  S4  -T 5 • a1  T I

0 -T 0 S4  -T S 6 . $2

0 4 0 -16 0 •. S 4  T5  S6 -T 7  T 3

-S ) -T S T... U2  0 -U 0 ... b 0
3 4 524 0

S2  T - -m S 0 U 0 -U.. b, U2
S 3 4 5 6 4 6

S -T S -T.. U 0 -U 0 ... 0
4 5 6 4 6

:4 T -S -T S ... 0 U6  0 -U U
1 4 5 6 "7 5 84

wh ere

1
k kL

k=l

nS = n 1kRkk
2. 7WI R W

k1 k k kL

i k-1kIkk

n

U. = _ Wk (R2 + 12)WkL
' k---iL

Rk and Ik are the real and imaginary parts of the transfer function at

experimental points, and L is the iteration number. The coefficients

b i, b 2 ' ... evaluated at the L-1 iteration are used to refine the

weighting function W L for the next iteration.

A FORTRAN program has been written implementing the abovc complex-

curve fitting algorithm.

3.2 Applications

The aforementioned method was applied to the data generated by

the terminating admittance function Yt of the biconical-antenna model

as given by Tai (1]. The data is shown in Figure 2. A rational func-

tion witn eighth order numerator and ninth-order denominator was chosen

to fit this data over a range of normalized frequency 0 < SZ < 15. This

choice of transfer function was based upon the results of tests using

the same program to fit the input impedance of an ideal transmission-line
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terminated in a resistance. The results of the Yt approximation are

shown in Figure 9 and Figure 10.

Another test was performed on data describing the input impedance

of the biconical antenna as shown in Figure 11. This example was

approximated by a ninth-order numerator and tenth-order denominator.

The results are presented in Figure 12 and Figure 13. It is seen by

comparing these results with Figure i that the approximated imaginary

part of Z. fails to fit the data near 4A=G. This is due to a pole at

zero which the data contained that the rational approximating function

could not accomodate due to its chosen structure. This could have been

corrected by changing the data and rpinqerting the pole later, a tech-

nicue described by Levy [5].

The poles and zeros of the approximating function were extracted

by standard techniques and compared with those found by Tai and Cho via a

grid search. The result is shown in Figure 14. The poles and zeros

reflect the closeness of the fit over the approximating range.

3.3 Conclusion

The rational function approximation method employed here has the

advantage of being able to produce an analytic representation of data

that is amenable to linear transform methods of solution. Furthermore,

the implementation of the method is straightforward and computationally

efficient. For the accuracy achieved here, the typical run took 2 CPU

seconds (Amdahl 470) and cost $.50.

As a final remark, a more nearly mini-max approximation could be

obtained by incornorating Lawson's algorithm [2] in the iterative pro-

cedure but our investigations to date do not indicate that this will be

necessary.
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ABSTRACT

This report deals with the surface fields or the surface charge and

current densities on a ri ,, -an- l, c crncr rafl - c-Itr induced y ) pol arized

uniform plane wave. Equivalent circuit parameters of a short monopole

and a small semi-loop mounted on the wedqe are derived and explicit

correlations between measureable quantities and local surface fields

are established.
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1. INITRODUCTION

The class of problems related to the measurements of the electromagnetic

field quantities have attracted the attention of many engineers engaged in

sensor research. The major difficulty encounterea in the measuring process

of any energy related physical cuantity is the interaction of the measuring

device(s) with the physical field that always produces a perturbation of

the field. Therefore it is essential to have an apriori estimate on the

amount of the extracted energy by the sensor and the extent of the pertur-

bation. In this report we will consider a cannonical problem of this class,

namely the problem of measurement of surface fields on a right-angle corner

,eflector. A qood account of the previous work on closely related problems

is given in [2].

The geometry of the problem is shown in Figure 1.1. The walls of the

wedge are perfectly conducting and the medium of propagation of the waves

is air with oarameters (C, vI, j = 0). We will assume that the illuminating

polarized uniform plane wave is propagating in a plane normal to the axis

of the wedge. Furthermore only linearly polarized waves will be considered

with polarization of the E-field perpendicular and parallel to the axis of

the .iedqe resoectivel,'.

= 0)

iX

Figure 1.1. Plane wave illumination of a corner reflector.
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2. SURFACE CURRENT AND CHARGE DENSITIES FOR POLARIZATION PERPENDICULAR

TO THE AXIS OF THE WEDGE

To obtain expressions for surface current density K and surface

charge density : let us replace the above problem with an equivalent

problem as shown in Figure 2.1. The time dependence ej t will be under-

stood throuqhout the report. Then:

E (R t) Re I Ei(R)e t] Re [E 0ie (Wt -k R)] (2.1)

wi th:

k k-izex + -2 S z) [i

l H2 Z

k? kE k?

E3

Figure 2.1. Equivalent problem obtained using image fields

-k k

oE o 2, 3, 4

"o 0
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k = nri x - Cosa z

k3 = i9 x + 2 --S Z

k = -. nir o x + cose z (2.2)

E = Eo(_c sB X + sine z)

E2o= E2o(-o' , x - sine z)

E30  = E3  ... X - oir' z)

+ z

For surface current density we have:

K n x H = n x l(k x E+ k x E2 + E + k 4 x E4 )

where:

is the intrinsic impedance of air. On the surface x > 0, z 0 we have:

K(R) = z x -(k x E + k x E )e j kx + ( X + -
0 -4o j E3o

-x 2H 0(eJkx ' *  + e -jkxsir )  (2.3)

= -x 4Ho c.(kxz:t)

on the surface x 0, z > 0 we have:

K(P) = x x y H 1(2eJkZ-? -koe + 2e ) = z 4H icos(kzcoco) (2.4)
0 0

To obtain the surface charge density o we will make use of a boundary
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condition derived from the continuity equation. When one of the media

is a perfectly conducting surface this boundary condition reads:

* K -

Therefore, on the surface x > 0, z = 0, we have:

R(P) - J 4H ik, : 3, , (k xad:

-j 0

(2.5)
(R) j4 E i  " k0

similarly on the surface x= 0, z > 0 we have:

I(R) = -j4 E i0 skzzse) (2.6)

2.1. Surface current and charce densities for Dolarizations parallel

to the wedqe axis

For this polarization as it is apparent from Figure 2.2 the following

changes should be made in the formulation of the previous section: -i
Z

k 2~

S- H'

x
H4

kk

SE p 
4

Figure 2.2. Equivalent problem obtained by using image field.
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H 0 H 0 x j::, z)
0 0

H 0 = H i(_,:..,e x - : z)
0

- i
H3o = H (- ,f x + S-o z)

H 4o H 0(fix + SI5Z)

K(R) = yj4H 1  K,& x > 0, z 0 (2.7)

K(R) = yj4H 0 - ,il&:(kz;-r) x = 0, z > 0 (2.8)0

: ) 0 for either x > 0, z 0 or x = 0, z > 0 (2.9)

3. OPEN CIRCUIT VOLTAGE OF A SHORT MONOPOLE MOUNTED ON THE RIGHT-

ANGLE CORNER REFLECTOR

The geometry of the problem and the significant parameters are shown

in Figure 3.1 We assume that .the p-obe is electrically small. We will

"/k

d I
J -

" !1

gure 3. I. Short monopole mounted on a wedge.
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consider only the non-trivial polarization of the incident field. As

a result of the image theorem, the induced current in the receivina antenna

is related to the open circuit voltage by:

V r

r oc (3.1)

z. 2 + ZLinL

whe re:

I = current at the base of the receiving antenna

t
i = input impedance of two transmitting parallel dipole antennasin

resulted by removing both conducting planes and using

the image probes.

Voc open circuit voltage of the receiving monopoleoc

In this section we will deal with open circuit voltage only. The

incut imoedance problem v,ill be discussed in a separate section. Using

the vector effective height Ft of an antenna, we can write:

V r i -t (3.2)

The iector effective height of a short dipole (or equivalently a monopole

on a ;r-,td al ne) is given by/:

h (P) Q
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which corresponds to a linear current distribution:

I (z) = I (1 - zj/;.) !z < z, with k, << 1.

For the :roblem at hand we have:

r(R.) -t(\) h (_,;sC_ 3)
oc l R' = d, 0= 5 '  )

-~~~~~~ kd::;- -kd,,£:
J e + . tz' E 2o e

or

r j2E 1  kd-) (3.3)
OC 0

3.1. gen circuit voltage of a semi-loon orobe whose axis is oarallel

to the ,.edie axis 1

/Vk/ i

/
/

/L a

Figure 3.2. Small semi-loop mounted on the wedge.



_--

The open circuit voltage for the Drobe shown in figure 3.2 is defined

as:

V r t-

Voc -

For a small loon with const current distribution h is given by:

j ka ) s: - 
2

oc (R = d, 2' '  0)

r 2 li 2 d

Voc 'j-(ka) -

E1  2 2' 20
E 
i1

r 2 oV C j2-(ka) - ckcu

j- i, -a )H0-,c (kd.:, ) (3.4)

3.2. Open circuit voltage of a semi lood probe whose axis is nerpenoicular

to the wedae axis.

/d

ZL 
, K

Fij r1e 3.3 Small semi-loo,,n nrohe ,..ith axis
perpendicular to the wedge axis.
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The pertinant polarization of the incident field for this configuration

of probe is deoicted in Figure 3.3. Following the same procedures of the

previous section and considering the direction of the current density of probe

we can write:

r
oc

R1 = d, e' 0)

V 2w( ra2 ) H (kd,-, ) ( .5)
oc 0

4. INPUT IMPEDANCE OF THE PROBES

Equation (3.1) of section 3. indicates that for completion of the equi-

valent circuit parameters we need to evaluate Z. . which will be simply

referred as Z. from now on, in each of the probing configurations consideredin

previously. Let us once more recall that Zin is the input impedance of the

transmitting antenna in the presence of its images. With this in mind we

will begin deriving analytical formulas for the input impedance functions

involved in the problems at hand under the assumptions imposed on electrical

sizes of the probes. The problem of determining the impedance for the cases

considered here has been extensively explored previously, however most often

in the form of tables and curves. We will include here the complete express-

ions for these functicns.

4.1. Inmedance parameters of two identical, parallel, and short transmittinq

dipoles.

The problem arising from the application of image theory to two antisymmetric-

ally driven antenna is shown in figure 4.1. Since the probe is assumed to be

thin and short (a - 2, k-- I), a linear current distribution is a suitable
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anoroximation and the induced EDF method can be applied successfully to

determine its input impedance.

For convenience we will proceed by z

assuming a sinusoidal current distribution.

At the fInal stages the results wiii be sim- 'T- X V

Plified 1v using the conditions imposed on

a, ., and j.

Based on filamentary current distri-

bution v-e have for the magnetic vector Figure 4.1

potential -(R): Two identical ,parallel transmitting
antennas.

A(R) f- f G (RR')J(R') dv' =
VI

-ikRi  -ikR
' , e e 2 dz

z -- I( Z' ). l - R dz'
1 2

Rl and P2 are the instances from the observation point to the source points

on the axes of the dipoles. For R on the surface of one of the antennas we

ha ve:

Rl  = [(z _ z,2 + a2 ]  R - 1[(z _ z,)2  + 22] for > > a. (4.1)

The electric field on the surface of right hand side antenna is given by:

9

- .-1 + Z_ +_ .l 2  A (
- ..... + .k - z j2(l + 2) 4A (z)

z IV (z) (4.2)

where! as usul a slice generator has been assumid. Multiplying (4.2) ny IVz)



and integrating over the source region we obtain

V 
1 2

0 1ffI(z)I(z)(1 + 2- G dzdz'

-jkR l  -jk 2

where Gl (z,z) - G (z,z') _

G(z z') = l (z,z') - G2 (z,z')

The first integration with resoect to z amounts for evaluation of z-component

of the near zone electric field due to current distribution of the form:

1(z) = I 3c>:k( - z)z

m

Therefore it is given by [5.11:

I k(z)(l + 1 ) (z,z ) dz = fG(',z ' +

+ 3 - Z.,z ) 2,-- ck2, r(O,z')

we then have:

Z. 1(0) + G(
in4k G(,z') + G( - ,z'

- 2 ,o.ck, G(O,z')} l(z')dz'

Zin 2 f {G(,,z) + G( -. ,z) - 2 .c,? kZA G(O,z)lx

x u k(, , - z) dz (4.3)
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Let us note that from the circuit relations for these antennas:

VI = ZllI + Z 12 12

V2 = Z2 1 11 + Z2 2 12

It follows that for antisymmetrically driven antennas we have:

Zin = 11 Z 12  (4.4)

Let us define:

(a) f {G(Z,z) + Gl(- ,z) - 22k " G (O,z)} x
0

x 3sck(z - z) dz (4.5)

combining (4.3) (4.5) we obtain:

- 1(a) Z12  -2 (4.6)
2Zl n k2 s3iZ 2kZ

Therefore the problem of input impedance reduces to the evaluation of (a),

and (.

,(a) has been previously evaluated by expressing it in terms of sine and

cosine-integrals [ 61 We will choose another approach which enables us to

obtain a series exn :ision for -(a), and -,(p) and in particular to reduce the

results to simplified forms under certain assumptions on the parameters. We

have:
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z2 k -jkv'(x 2 + a2 )
f flz) s k ( - z)dz2= +

2

. z -jk/(x2 + a2)f Gl(- ,z) ck(- z)dz e 2 i k( X)dxf 2 ~(2 --
0 (x2 + a2 )

,t £ -Jk/(2 + 2 )

G l(O,z)c-:k(Z - z)dz f eo jkv:kx +- x)dx

o x + a)

Therefore we are led to define:

n 2 2: = -k/(x + a2)
/ 2 + 2 )  S3kxdx (4.7)

2 x+ a2 )

c e-jkv/(x 2 + a2)
f f (e2 +2 2skxdx (4.8)
o v(x 2+ a 2)

Then in terms of s(Z,a) and C(2Z,a) we can write:

,(a) = s(<.,a) + s&, 2kI(C(2),a) - C(.Z,a)) +

2-..,2k,(s(22.,a) - s(2.,a)) 2s- zk2c3sk2C(Z,a) + 2 2 Ks2kZ s(,.,a)

,(a) 2 s(Z,a) + (2 s(It,a) - s(2.,a))jos 2kz - (2C(2.,a) - C(2Z,a)c:';.2k.

(4.9)

In order to evaluate s(2,a) and c(2,a) let us introduce the following dimension-

less parameters:

a 2 + X2 (4.10)

Then: 2 2
1 -j:/(x + )

= (x2 + 2 sjwLxdx - s( :,i.) (4.7')

C(:, a (x c(x + d

1 /(x2 +

0 /'(x + JI)
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wi th:

12 + 2 l(x 2  + a )

= - f e+ :+ f xe +
z 0 

O+ f x2  + 2)
0 0. + +2)

2f 2 20 i;( + ,)1 -v(x + 0

f e-jv(x 2 + a2) ,c'Exdx

0

Hence:
1 -:- ",2 2 c2)

-s e _j /,2 + :2) 1Q~ ( 9c

S~~ ~~ , i~ r1y

_4 ( e- A:, -

similarly"

12~ 2 1-j:MX 2 +t2-,c / I ~ (x2 + DC ~dx-I x e-J'x +  -2 -x xdx

f e c(X xdx f +J J0< 0 o (x2 + a2)

jc ( 2 2
e _. _ (x + 2) _ _1x  (4.12)

_ e 0 e (

s 3c

We will proceed by finding a series expansion for and y. For the sake of

numerical comoution we will develop two different series expansion depending

on the relative values of ctE = ka.

I) iJ '< 1

S 1 1 (e-j (2-l) + e-jr(3+l)) - e-j
j- (e ~

1 ... (_j )n-I
2- 1) + ( + 1)n  2 n

n=l n!

s(Z,- ) - 2 { (: -
l)n + (3 + 1 )n 2,n, (4.13)

n=l



-15-

2s s(2 2) - 1 12 ' 2 n l r n n
n 2

21-n{(3-1) n + +l n}-{(B()-I) n + ( () 1 f} - 1-

(4.14)

Similarly we have:

m _ 1n-1
c ( -J ) {(3-)n - + l)n}

e _,(j)n

c(2,' ) - c(O,:L) = - ~ (-~ ln
n=1

1 _j1

1) dai 2 2 1 I+
(/ 2 = x 2d ) c (x + /(x + c2)) Zn C+

00 n

3+1 1 n ( -1 n ((+lfn, (4.15)

2o nCL 2 n 2 Z) l1 0

2c(,cx) c(27, Z) = Zn + Znc - 1 nln n
(2,+i) 2  2 n=l

(4.16)

c n =nn =
2 1-n [(2-1)n - ( +l )n] - [(3(L)-I)n - (B(QL)+I n

The p-evious expressions are so far exact. Let us introduce

aoproximations under the assumptions:

a k) << 1

then

1 4

3 ( ) 1 + J -
I.2 + O (ci )

2[ # +l 1 2 22

n - n 4(I + + 2 n2(()+i + - + 0 )

2 (n) (m(n,) 1n m=0 m m=O

x[1 + (-1) n -m 1-2 1 -n n
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)2 + )
1 2

(2 -n 1) + O(c2 )

S (2 l- )( )[l + ( 1 -In - + 0( 2

Jn m 0

S( 2 1- n - 1) 2 n + O(ca2) (2 - 2 n)-_6 nl + O(a2)

where 3 is the Kronecker delta.
nnn

1-n (n) imrl - ( fl)n-m] + fl) 3m , [l1  (-1) n-m
0n -2 + m Y2~m=O m=O

- (2 n - 2) + 0(a 2)

Thus we have the following approximations:

S f + j2 a + 0(2 ) (4 13

2s(#,:) - s(2-, c) 2 - n n ( 2n - 2) j2 4.14

2 n n I
+ 0 (c2 ) 4 .14

2c -- ) - c 2 , n nn (2n  2)

+ O( -2 ) (4.16

Finally for I(a) we obtain:

i;(a) - .->2#Zn + (s:2 j 2 - joo2) -2T

n=l nn
(n-l-i + ' (-J2#)n 2
x( -)+jn1l  n,-----n (2 + or2j) + 0(: . )

5( < 3 4-

,(a) 2- - 2 3c + 2,7z2Utn - (2 )4  +36 48

+ 0% 5(52. (4.17)

If) L : >> 1
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For this case we have 7=k. =, . Following the above formulations

we set:

s( --,.) = s(0,a) + e-j ' t 0 n (4.18)

c(=,) c(&,a) + e -j  n (4.19)
n'Q

Then:

- n n -1n= n
n 0 Ja e S

e- ccZ[j 3+(~ r
nn n=O nn l

lt -j -j~ .- ~ n _j
e [ + n2 +l

n -0- +n- -i .n +1

C n=n

n n

x - n- + (3 - + 1) ,

e n 1 e n + 1
e n= n n0

where we have defined:

1 _ ' n ++ I n,
n 2 n 1) , I. , 2~ , 1) .- n,12 . (4. 20)

Therefore we have:

+ (n+) (_)n +1 (4.21

Recurrsion relation (4.21) starts off from so = 0 which is an immediate

consequence of (4.18):

0

'21 1)
2 2! '2 1



3 : ' 2 2
(-j)2 3 +

s 3 - l (f- n- + h2 --)

3 3' 3 21

_ j n1 _ nnI + n -l +n - n-IG

n n n n-I n-2

n=l ,2,3 .... (4.22)

Dc
Similarly for y--we have:

e e ' (-jac + (n+l)c# Ln n+l
n=0

o0

e-)n
e e n '-n- 

n

+ n

= f(~ -- (+£)-- ( +- -
n ]

n

n 0 n

vi t h•

I ( - c + I n  ( , - I n  4 2

co 0
+, ( n) c .

c = 01 *71

2 2 2 1L

( j n - 1 Y n -)

n =  n! _ n n--I + . + 1 )n n I 4.25)

In general (4.18) - (4.20) together with (4.22), (4.23), and

(4.25) are compact enough to permit numerical computation of s( ,j)

and c(r-,-t). However we would like to discuss the approximation and

further simplification under the conditions:
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-<< 1, -"<< 1.

We have:

= v(m++ 2)- 2m+ -(2m-3),. -(2m-i)

(-1 mm=1l 2 ml

with:

(2r-3): ! (2mr-3)(2m-5) - - - 3.1 m=2,3,...

(-l) = 1

n +l n
n 2i = :(__?+l1 n + (3_; _l) n.~ - 1_ fl n ( _.m [1+(_l n-rn

n 2 _ 2 ' m
M=O

1 1 n

n -2 m0
co~

( )rn 1 -1 rn = i , +1 (2r+l )! _ . -

r O 2r + l (r+2)! 
r

1-1) ,() r+1 (2r+l)!! (2r+ +

r=O 2 (r+2)!

+ (i-l) 2 (I + 7 (-1 )r+ l  (2r+3)!! -(2r+2))2 +
2 16 r++

1 1 1 -2 1 -4 5 6 +
f + (1 -

- "t ) '
- 4( 8 64

2 1 -2 1 -2 5 -4 8(s- - 1 - k- + - )+ o(
2Y 16

3 -3 3 -2 -7. , (1 - c ) + o(,t )

;£ ..)4 _ 1 -4 -
4 4 + 0(6 )

1 -1 1 -3 1 -5 5 -7 -9l = (')= 2- ' - 8 ' + 6 128 -  ± 0(.

21 -2 1 -4 5 -6 -8
2' "-) 1 + 4 8 '  + 5 6 + 0 ,

3 -1 1 -3 3 -5 -7
3(2- + * - A +~-- +0(~

2 4 3 -2 11 -4 -6
S . .- . . -. )2 . (. _ ,,).+ 2- . . .
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2,1 -l 1 -3 + 1 -5 5 -7 -9
2- - 64 :  ) + 0 J )

2 1 3 -2 3 -4 6
1-[] + 3 + - +  0

r r-4( -:) + 4(3-L) 2 3 (2 , '  ) + 0(: )
3.. . . ' .

Fro'2 (4.22), (4.25) and (4.26) it follows that:

21 21 3 _ - 5

2 N" - 2! [(2 ) 2 2 ) 4 + 0 5

'( 1 + l 2,,,)-]3 + 0( : )

3 2 3

4, -2 -4 -5
4 3 -- 2-, 2(2 1 + 0( ) (2.27)

__ -5

c I 4

1 -( -... (2 --,)T. + 5

Also, ,t us rote that:

], 2* + ( 2;) -- (l ± i. + 4 (-)
3n 6

- U \ I . r n

r 1 - 3 (-+,1 1 3 3

S - I . . .... l 2 . . -2 n

Al-,C,~~n1; ', t u: r t h t
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- -1 (_) n+2 2m-3)!! -2m,2
m+

2n 1 2r!! +

-l l -3 + -5
.0 , - -

2c$Q,:) - c(O, 3) a 0 - S) (4.28)

.ow we can proceed to evaluate . -)

I() = 2s(-,,t) + - 22 (2s(r,a) s(2:, -))

e e - - 7 (2-) n 2 1 - n 
n (:) + ,2 x

n=O
n -n

x (2 ( - (-)) - G>27(2 -nc ()
nn2 n

- c ( j - c C:27(2c(O,a) - c(O,±)

2O2 2

n = 0

(2 2- 2-n 2 4 1 -

2 )(2 n n 2
- (2 -2 + ) ( 2

l -n (: ) - c ) )

2 ~ 1 -n
2-6 Cn n

- 2 2 c ( 0, - c 0

3 -3 3 -2 2 3 ( 2-

-5 3 -3+ a - - - , )} } ( 4 . 2 9 )

- 3 -3 3 -5

2

t.r ,, 2
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l -k 4-1 -2 -3,
I( ) e jk (2:) 4  k ) + j3(k.) + 3(k:-) 3
32

1 ,23 J )} (4.30)

using (4.6) together with (4.17) and (4.30) we finally obtain expres-

sions for 711 and z1 2:

: a) j. _-2 .2 A4 -2 
. 2_ 2-2- 6 + 24 + ) x a

_ j ( -2 + I 42- ' + + 0 K)) :(a)
2--2

2 '(4 - 6 (2 -1 2 + +

Z2 + 2- 2-l12 t O122-l

wi t h

S a-- (4.31)

z 2 ( -2 1 A4
12 2 2 - + + 0( )) ..

1 -jk 2 -1 2 -
Ze (2 ) 82k) + j3(k:) + 3(k.:)

142 33+ 0 -5
I2 2 k .;)- + 0o : : ( k ) , ( k .) ]
2 k k

Then the input impedance for the problem at hand is given by:

Zin = z - z 12 (4.4)

Let us r7 te that in (4.32), as in previous sections, we have

4.2 T . t i a a ; once of two coaxi al smal 1 circular loops in transfm i t-ina

For an electrically small loop we assume that its current distri-

Kit or is uriform when driven by a localized voltage. The conventional
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induced EIMF method will be applied to determine its impedance. How-

ever, the formation is much more complicated than the case for linear

antennas. Therefore assumptions imposed on the geometry of the probing

antennas justify adoption of simpler approximate methods in ad hoc

bases for evaluation of self and mutual impedances.

As can be seen from the application of the EMF method to the anten-

nas of previous the previous section the self impedance can be obtained

YI

X I

Y

Figure 4.2 Coaxial transmitting loop antennas

by removing the image of one antenna and evaluating the input impe-

dance of the iso'ated loop.

The inpu' resistance of a constant current loop may be simply

evaieated by an application of Poynting's theorem (9.21. The result

is

in -- [-(Ika) 2  2iR I ... n ( 4 .3 3 )
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A rather simple way of obtaining a compact formula for the input

reactance of the loop is to make use of the reactance of the loop Lased

on the circuit theory. According to Reference [9.1] the reactance of

the loop is given by:

x. - (L. + L ) ::+ a((Z)n 'I2 (4.3)
in 1 0 3 b

where Li  is the internal inductance of the wire, L0  is the so called

selected mutual inductance, and b is the radius of the wire of the

loop antenna. This result compares very well with the leading term

of the formula obtained for x. by application of the wave theory asin

discussed in [1]. Combining (4.33) and (4.34) we obtain the self

imoedance of the locp:

z . + j X. (-(ka) 2  2l "In In - 6) +

+ j. - + a - 2]1 ( .35)

4.3 "utual imnedance of the two coaxial loop antennas

As for the case of monopole on a corner reflector, we will pre-

sent a simple and compact formulation for z1 2  of two small coaxial

loor antennas. 4e will use the EMF method again and therefore the

Fresnel field of a constant current loop is needed.

T he Fresnel field of a constant current loop antenna has been pre-

viously obtained in the form of a rapidly converging power series in

ig.l1], L2], [3], and [4]. We will obtain another series expansion

which closei follows the ones given in [8] and will prove more suita-
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ble in application of the EMF method.

Using the addition theorem for Legendre and spherical Bessel

z R

Y

x

Figure 4.3 Geometry of a constant
current circular loop antenna

functions the potential integral for A(R) is evaluated. For R > a

we have:

j:-kaI

4 x

2 (-,)n+l( 4 n+ 3 )(2n)!

n=O 22 (n+l)(n!)2

2n+l(ka)h(2 ) (kR)P 1  (4. 36)

Let us set:

22
- ,'( + 2' - 2,,'coo ') (4.37)

wJ
a i th'

2 + 2 R 2 +a 2

. ' = aR., 'il

comparing with:
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in  -' +(R  2 2 _ 2aR

where: Ink = r e .

We conclude that is the angle between two position vectors and )

with angular coordinates:

-- = 0 =

Fro: (4.38) we have

l 2  2 2
" + a - ((R + a 4 _ (am - ) )}2

2 2 1 ( 2
R + a ) 1 - v'(1 - 2))

2aR.- 1 (4.39)

R2 a 2

Now we can use the addition theorem for the spherical Hankel function:

(- ) h 2 (kK) -2

and the addition theorem for Legendre polynomials:

o, n ( ' ,:'r') = In (,o p ( O e) n m (n-m) ! Pn o ), x

x po e eP' )g ;in( 00- e )
n

where ' = _- c + :" - e o s(;- #') = , # Following

analogous steps which led to (4.36) we obtain:

k a 1 20
4-- 1 T-n+l (2n+l)[P n+l xA( ) ( 4 n=0

x k ' )h (2) ( k,,)
2 n +l k  2 n +l

o vi (4.40')

Furthermore we have [7j;
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2( 2 + I)
-1/2 ~ + 2P (O) = 2- IL.,# 2- \j ]~ r l 0 2 --

Therefore:

P 1 (0) = (-1)n+l (2n+l)!

2n+ 2 2 (n,)2

Finally we have:

ju J ka1 0 CO (4n+3)(2n+l) [ 2n); .2
2j x4 n=0 n+l 2

2 n(n! )2

x J 2n+l (k )')h 2n+l (k- )

') < %) (4. )

Thus electric field intensity can be obtained as:

E(R) 1 -(l + 2 ) ) =

(ka ) 24o 1 4n+3 1 2

4a ) (n+l)(2n+l) 2n+ln=O

j2n+l (k ')h 2n+(k ) < (4.41)

Note that in obtaining the expression (4.41) we have used the follow-

ing relation:

A= 1 =0

N'ow we are in a position to obtain the mutual impedance of the

antennas shown in Figure 4.2. Application of the reciprocity theorem

to one of the two antennas, say antenna 2, yeilds [5.2].
r _ I f -'i t d ,- 1 Jt•dvl

I V'

w here

V open circuit voltage of antenna 2 in receiving mode

tI -current of antenna 2 in transmitting mode

- _incident electric field when antenna 2 is removed
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i =-current density of antenna 2 in transmitting mode.

Noting that:

21 2 20OC
z 220

we can equivalently write:

z21 1- [i 2('d (4.42)

wh ere:

Using (4.41) in (4.42) we have:

21 - (ka) 24n+3 [P1  (0)], 221 V4a n= (n+1) 2n+1) 2n+1

x k,,,h( 2) (_k_ -a-__

2 n+ 1 2 n+1I R' 1

2 o2

'k) Y4n+3 [P1 2
21 4a n- n+1 2n+1 [P2n+1 (0)]1

(2) 2____

wie nave:

21 ,(k )4nr [P 1  (0)]2 x2 2' n= n+1 (2n+l1 2n+1

k,')h (2) (k ))( . 3
j2 n +1 ( 2 n +1 (443

For Wa ",1 and a -< . we have:

2 a . -," :-, 2 2 - < 1(4.39')
R2 + j 2 1,2 + 2a 2
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(R2  2 1 12 R + a2) f~ 'l - ".) .,

2 2 1 2 4SR
2  + a 2 {l[l - (I 2- I + 0( 4)]1

2R + a Y2

2  (2 2 a 2a 2
+(2] ) 2 2  [1 + 0(2 4 2 (4. 44)

R2  + a2 )2 [1 - 12 + 0( )] - (42 + 2a 2 [1 + 0(" 2

Therefore:
4

ka a 2 2)a a 4
k_ ka 2 2a +a

(7 2+2a ( +

4
k. = ,/ 2 2 2 2 1 'r 4)  4

2 + 2a [1 + 0( 2 k( 2 + 2a )2  [1 + 0(a11

Let us note that [11]"

(z) 2 n (-!)0(n+m)! 2m

in " Z = 2z n 0 m ( 2n+2m+l)! Z

The asymptotic expansion for h(2)(z) for large argument z reads:n

(2) ( ) 1 -j(z-(n+l )7)

n Z ;z H n+ (Z) e

F-I (-n) (n+l m -+

m=O m!(-2jz) m

We conclude from the above that under the conditions imposed on a and

the first term of the series (4.43) will be sufficient for computation

of z21":

21a 2 1 2 (221 = 2 ' a  (Pl( 0 )) jlk h1 ~ k

+ 0 (ka)2(kv )3 ( -l }

3-T 2 () (k)

21 =  '2 (ka) Jl(k2 )h ( ') + 0  }(4.45)( km )
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1= -n 7(ka)
2  e j e a + 8

-Z (k -)4

- - (ka) 2 2 exp-jk( 2 + 2a )2}
o + a'

0 (ka) (4.46)

Let us once more recall that the impedance which should be used

in (3.1) can be obtained from (4.35) and (4.46) by means of:

Zin = Zl - Zl = Zll z2
zin z11 z12 z11 z21

and changing . to 2d.

4.4 Inout impedance of two antisymmetrically driven identical coplanar

circular loop antennas.

The self impedance for this configuration of loops under assumptions

imposed on the geometry of the antennas in section 3.1 is identical with

the input impedance of a single loop antenna and can be obtained from

(4.35). The mutual impedance can be obtained in exactly the same man-

ner as follow;ed in section 4.3, however the integr.als appearing in this

case are a little involved and for the purpose of the problem at hand

it suffices to use an asymptotic formula for z 12 which is developed in

[10.21 based on effective heights of the transmitting antennas:

Figure 4.4 Coplanar loop antennas



22P ( 1  2 - P

x [J ka)2xk

4 e-jkP
Z[ -j n kaa) (4. 47

12 kl 22=

5. Correlation of the unperturbed surface fields to the equivalent

circuit parameters of the probes.

In previous sections an attempt was made to completely describe

the equivalent circuit parameters of the different probes mounted on

a corner reflector. Since any physical measurement performed by the

proc' es can be described completely in terms of the open circuit voltage

and the ingut impedance of the sensors, we will attempt to relate the

surface field quantities in the absence of the sensors to the equivalent

circuiit parameters of the sensors, or in other words to the measur-

abie quantities.

In section 2 it was shown that for a plane wave illumination of the

wedge w-ith electric field polarized perpendicular to the wedge axis

surface current and charge densities are respectively given by:

K(R) -x 4H 2H (kx->:) x > 0 z=0 (2.3)

- R) j 4 E0  .": .-":(kX.: e) x > 0 z=0 (2.5)

On the other hand the open circuit voltage of a short monopole mounted

on the wedge was found to be:

r j j2 1,E . .. .'o 0"E:> (::: ( x ' : e " 3.3)

Comparing i 2 5) with (3.3) we establish that:

r ( 5. 1)
Soc
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The unperturbed surface charge density is therefore related to

the open circuit voltage of the probe by an equivalent capacitance per

unit area:

c Farad/m (5 .2)eq Z

Equation (5.1) is the manifestation of the electric coupling of the

monopole probes and further justifies the name of 'charge probes' given

to this kind of sensnrs.

Similarly the Ir  for a semiloop whose axis is parallel to the
Oc

wedge axis was found to be:

2 i0roc - j 2 (:-a ) Ho0 ;3( k x " ) (3.4

Colmoaring (3.4) with (2.3) we have:

2
,,r 11 7a k (5 3oc 2 x

That is the equivalent inductance relating ,r to unperturbed current
Oc

density is given by:

e - i:( -a ) Henry m. (5.4)e q 2

It is obvious that the coupling of the probe to th.e electromagnetic

field in this case is of magnetic type. Let us finally note that for

the plane wave whose electric field is polarized parallel to the wedge

axis the surface currents and the corresponding surface magnetic field

can be detected by a semiloop sensor whose plane is parallel to the

current lines. From (2.7) and (3.5) we obtain for this case:

2
oc k (5.5)

That is to say the equivalent inductarce for this case is also given

b, (5. 4).
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Let us conclude from the above results that as lonq as our sen-

sors are electrically small low frequency elements relating the open

circuit volta.'e of the probes to the surface fields only depend on

the aecmetrical characteristics of the probes and are independent of

the characteristics of the source.
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